Antitrust risk simulation in digital markets

Main Article Content

Alessandro Roosevelt Silva Ribeiro

Abstract

This study proposes a hybrid approach for assessing antitrust risk in digital markets, combining supervised machine learning (Random Forest) with Monte Carlo simulations. Using real data from the Administrative Council for Economic Defense (CADE), enriched with proxies for digital characteristics, it estimates the probability of high antitrust risk based on variables such as market share, network effects, entry barriers, and the use of pricing algorithms, employing Python for simulation. The model suggests that digital platforms with a market share above 40%, combined with increasing network effects and active use of pricing algorithms, have a probability greater than 85% of generating antitrust risks. The results demonstrate the predictive capability of the proposed system and its usefulness in providing insights for regulators and managers.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ribeiro, A. R. S. (2025). Antitrust risk simulation in digital markets. Revista Do IBRAC, (2), 35–51. Retrieved from https://revista.ibrac.org.br/revista/article/view/1444
Section
Artigos para Revista do IBRAC
Author Biography

Alessandro Roosevelt Silva Ribeiro

Alessandro Roosevelt Silva Ribeiro, mestre em Computação Aplicada pela Universidade de Brasília e Mestre em Direção e Gestão de Sistemas de Seguridade Social pela Universidade de Alcalá em Madri-Espanha. Especialista em Gestão de Pessoas e Negociação Coletiva. Servidor Público Federal, Diretor de Tecnologia da Informação da Previdência Complementar do Estado de São Paulo.

References

ALMEIDA, Carlos E.; BORGES, Gabriela D. Metodologias estatísticas para definição de mercado em plataformas digitais. [S.l.]: nais do Congresso de Economia Industrial, Curitiba, 2021.

AVIS, Peter; GARCÉS, Eliana. A Probabilistic Approach to Market Definition and Dominance. [S.l.]: Journal of Competition Law & Economics, 2010.

COSTA, Ricardo M.; LIMA, Fernanda G. Teoria dos jogos e comportamento estratégico em investigações antitruste. Brasília: [s.n.], 2022.

HARRINGTON, Joseph E. Game Theory Models of Risk Assessment in Antitrust Cases. [S.l.]: International Journal of Industrial Organization, 2013.

HARRINGTON, Joseph E., Jr.; SKRZYPACZ, Andrzej. Game Theory and Antitrust Policy: Recent Advances and Future Directions. [S.l.]: Competition Policy International Antitrust Chronicle, v. 12, 2022.

LYONS, Bruce R. Risk Assessment in Merger Control: A Theoretical Model. [S.l.]: European Competition Journal, 2002.

MILLER, N. H.; SHEU, G. Recent advances in merger simulation. Oxford: Journal of Industrial Economics, 2021.

MOTTA, Massimo; POLO, Michele. Quantitative Methods in Competition Law. [S.l.]: Journal of Competition Law & Economics, 2019.

SHAPIRO, Carl.; E., John; WHITE, Lawrence J. Structural Models for Competitive Effects. In: KWOKA. [S.l.]: The Antitrust Revolution, 2017.